Le neutron est un des éléments qui constituent l’atome. Il représente aussi la moitié de la matière qui nous entoure. Ainsi, impossible de l’éviter ! Retour sur l’histoire et les propriétés du neutron, puis sur l’utilisation qui en est faite aujourd’hui en matière de physique nucléaire.
Le neutron est une particule présente dans le noyau de l’atome (pour plus d’informations sur l’atome et sa constitution, rendez-vous sur notre article « Qu’est ce qu’un atome ? »), tout comme le proton. La charge électrique du neutron est nulle. Ainsi, comme son nom l’indique, le neutron… est neutre.
La découverte du neutron est issue de trois recherches menées dans trois pays différents : en 1930 en Allemagne, en 1931 en France, puis en 1932 en Angleterre. Mais malgré ces travaux qui ont approfondi la connaissance sur le neutron, il est communément admis que le neutron a été découvert par Chadwick, en 1932, cet événement constituant alors un tournant dans l’histoire de la physique nucléaire.
Avec le proton, le neutron est l’un des constituants du noyau atomique. A l’intérieur de la majorité des atomes, le neutron est stable. Mais lorsqu’il est « libéré » de l’atome, qu’il en sort, le neutron se désintègre en seulement 15 minutes environ.
Le neutron est constitué de trois quarks (1 quark u (appelé « quark up » et 2 quarks d (appelés « quarks down »)) en interaction entre eux. Les gluons permettent de « relier » ces quarks entre eux et de faire tenir le neutron.
La charge électrique du neutron est nulle (les charges électriques des quarks qui le composent s’équilibrent entre elles), d’où l’idée de certains scientifiques de considérer le neutron comme un proton qui aurait perdu sa charge électrique.
Le neutron est utilisé depuis 40 ans pour traiter le cancer : il s’agit de la neutronthérapie. Seulement 10 centres médicaux dans le monde (dont 1 à Orléans) emploient aujourd’hui cette technique, extrêmement difficile à mettre en œuvre.
En cancérologie, on utilise l’irradiation pour brûler les cellules cancéreuses. Cependant, la destruction des tumeurs n’étant pas toujours définitive (la tumeur se reconstitue parfois progressivement même après l’irradiation), certains centres médicaux utilisent les neutrons comme «armes» pour détruire la tumeur définitivement. Les neutrons parviennent à « casser » les atomes de la tumeur en plusieurs fragments, ce qui rend presque impossible la reconstitution de la tumeur dans le futur.
La matière qui nous entoure (donc les neutrons à 50%!) est un énorme réservoir d’énergie. Les centrales nucléaires exploitent ce potentiel en produisant de l’électricité par la fission de noyaux atomiques lourds.
Les réacteurs actuels utilisent de l’uranium, dont la fission est provoquée par un certain type de neutrons (les neutrons dits « thermiques »). Dans les cuves des réacteurs nucléaires, la fission est provoquée par la rencontre entre un neutron et un noyau d’uranium.
Suite à cette fission, l’uranium émet des neutrons supplémentaires. Mais ceux-ci sont un peu trop rapides : il faut les ralentir si on veut permettre à ces nouveaux neutrons de rencontrer à leur tour des noyaux d’uranium, et de provoquer une nouvelle fois des fissions (et ainsi de suite, le processus se répète et s’auto-entretient).
Ce ralentissement est faisable dans l’eau, car la molécule d’eau absorbe aussi les neutrons, donnant de l’eau lourde. Cela marche donc beaucoup mieux en prenant de l’eau déjà lourde comme ralentisseur. Dans les réacteurs nucléaires, l’eau joue donc à la fois le rôle de « transporteur » des neutrons, et celui de modérateur.
Les neutrons sont donc libérés en abondance dans les réacteurs nucléaires, suite à ces réactions de fissions en chaîne. Mais attention : il faut maîtriser ces flux de neutrons, pour permettre le bon fonctionnement et la sûreté des réacteurs nucléaires. Le contrôle de la fission est donc un point clé du fonctionnement des réacteurs nucléaires.
COMMENTAIRES
La masse de l’électron est de 0, 0005485580275741 uma
La masse du proton est de 1,007277124778158 uma
La masse de l’hydrogène est égale à la somme des 2 masses soit : 1,007825705053899 uma
Si nous ajoutons :
La masse du neutron est de 1,008687389715807
Nous obtenons une masse totale de 2,016513094769705
Pour une composition quo corréspond au deutérium dont la masse est égale à 2,01410177799 uma
Il existe donc une masse manquante de 0,00241131677970 uma
Qui selon Einstein E=Mc² représente0,e +13 joules/mole ou 60282,918 Kwh.
56
Si on monte plus haut dans le tableau de Mendeleïev, on trouve pour l’isotope Fe une masse manquante
26
égale à 0,52915245 uma soit 4,76237205 . e+23 ou 13.228.811,25 Kwh.
Cette énergie ne se manifeste pas à l’extérieur de la mole à cause du chaos moléculaire..
Ce qui donne à croire que l’atome n’est ras vide mais au contraire plein d’énergie.
L’exploitation de cette énergie est-elle envisageable
Merci de votre bonne attention avec mes meilleures salutations
F. ABSIL
26
Bonjour,
Serait-il possible d’obtenir plus d’information sur la neutron thérapie?
Cordialement,
Colimason
mon intérêt pour ce type d’information